phone Phone
+622184596877
sql
 UHMW-PE
Hover to Zoom

Jual UHMW-PE



Spesifikasi UHMW-PE

Ultra-high-molecular-weight polyethylene (UHMWPE, UHMW) is a subset of the thermoplastic polyethylene. Also known as high-modulus polyethylene, (HMPE), or high-performance polyethylene (HPPE), it has extremely long chains, with a molecular mass usually between 2 and 6 million u. The longer chain serves to transfer load more effectively to the polymer backbone by strengthening intermolecular interactions. This results in a very tough material, with the highest impact strength of any thermoplastic presently made.[1] UHMWPE is odorless, tasteless, and nontoxic.[2] It is highly resistant to corrosive chemicals except oxidizing acids; has extremely low moisture absorption and a very low coefficient of friction; is self-lubricating; and is highly resistant to abrasion, in some forms being 15 times more resistant to abrasion than carbon steel. Its coefficient of friction is significantly lower than that of nylon and acetal, and is comparable to that of polytetrafluoroethylene (PTFE, Teflon), but UHMWPE has better abrasion resistance than PTFE.[3][4] Structure and properties Structure of UHMWPE, with n greater than 100,000 UHMWPE is a type of polyolefin. It is made up of extremely long chains of polyethylene, which all align in the same direction. It derives its strength largely from the length of each individual molecule (chain). Van der Waals bonds between the molecules are relatively weak for each atom of overlap between the molecules, but because the molecules are very long, large overlaps can exist, adding up to the ability to carry larger shear forces from molecule to molecule. Each chain is bonded to the others with so many van der Waals bonds that the whole of the inter-molecule strength is high. In this way, large tensile loads are not limited as much by the comparative weakness of each van der Waals bond. When formed to fibers, the polymer chains can attain a parallel orientation greater than 95% and a level of crystallinity from 39% to 75%. In contrast, Kevlar derives its strength from strong bonding between relatively short molecules. The weak bonding between olefin molecules allows local thermal excitations to disrupt the crystalline order of a given chain piece-by-piece, giving it much poorer heat resistance than other high-strength fibers. Its melting point is around 130 to 136 °C (266 to 277 °F),[6] and, according to DSM, it is not advisable to use UHMWPE fibers at temperatures exceeding 80 to 100 °C (176 to 212 °F) for long periods of time. It becomes brittle at temperatures below −150 °C (−240 °F).[citation needed] The simple structure of the molecule also gives rise to surface and chemical properties that are rare in high-performance polymers. For example, the polar groups in most polymers easily bond to water. Because olefins have no such groups, UHMWPE does not absorb water readily, nor wet easily, which makes bonding it to other polymers difficult. For the same reasons, skin does not interact with it strongly, making the UHMWPE fiber surface feel slippery. In a similar manner, aromatic polymers are often susceptible to aromatic solvents due to aromatic stacking interactions, an effect aliphatic polymers like UHMWPE are immune to. Since UHMWPE does not contain chemical groups (such as esters, amides or hydroxylic groups) that are susceptible to attack from aggressive agents, it is very resistant to water, moisture, most chemicals, UV radiation, and micro-organisms. Under tensile load, UHMWPE will deform continually as long as the stress is present—an effect called creep. When UHMWPE is annealed, the material is heated to 135 °C to 138 °C in an oven or a liquid bath of silicone oil or glycerine. The material is then cooled down at a rate of 5 °C/h to 65 °C or less. Finally, the material is wrapped in an insulating blanket for 24 hours to bring to room temperature.[7] Color Green, Natural (White), Black

 

Marketing Office : Jl. Katalia Raya AS I no. 8, Cibubur 17433 Phone : +62 21 29060401 / 84596877 Mobile : +62 8118164195 Fax : +62 8455368 E-mail : sumber_rk@rocketmail.com

Untuk keterangan lebih lanjut, silahkan download PDF ini :

Powered By Indotrading.com